
1553 Control for Co-processors
Keeping control of the interface

Feb 2, 1989

In the Loma Linda VME system, co-processor boards are used to provide
waveform generation to drive ramped power supplies. The interface to the
supplies is via 1553. Access to 1553 cannot be shared, as sending a new
command will cancel one which is in progress. One could make use of
semaphores to support resource ownership, but the ramp generation is
extremely real-time, with up to 4 power supplies driven simultaneously at a
rate of 720 Hz. There is very little time that the 1553 interface is not busy.

The ramp co-processor routinely plays out the ramp and reads back the data
from the 4 power supplies at 720 Hz. But digital control needs to be handled
somehow. We must be able to turn power supplies on or off, for example.
The request to do this will come from the main VME cpu either from its own
current application—especially the parameter page—or from a network
setting request. The hardware connections are there to allow the VME cpu to
talk to the 1553 controller, but it dare not in order to keep from affecting the
ramp adversely. We must get the co-processor to do it when it has a brief
period of time available to sandwich it in with its other I/O.

The natural way to let the co-processor know about a digital control request is
via a message queue in shared memory. By using a queue, several control
messages can be awaiting co-processor service. (At the 720 Hz rate, there may
not be need for a queue to hold a large number of messages.) There is a system
table which contains pointers to co-processor queues. One of these is a co-
processor command queue—a separate one for each co-processor.

We can send a message via a co-processor’s command queue requesting that a
1553 control action be taken. The co-processor monitors the command queue
when it has time available and processes requests it finds there. In the case of
the ramp co-processor, the 1553 control must be handled by its interrupt code,
which is used to drive the ramp I/O. So, the ramp task level processing may
need to use another queuing mechanism to pass such requests to the
interrupt code. Or, it may simply use a buffer for the purpose—a one element
queue, if you will.

Returning to the VME main cpu, how shall it know to send a message to the
co-processor to handle the 1553 control? (The case of supporting digital
control is not simple, as has been covered in a separate note called “Digital
Control Pulse Delays.”) This note describes how to handle this at a low
enough level so that the complexities of the higher levels remain unaffected.

Let the various device tables in the VME system be built as if the VME cpu

1553 Control for Co-proc Feb 2, 1989 page 2
transaction is about to be processed, let the code realize that the co-processor
must be sent a request message instead to do the 1553 I/O.

Whatever processing goes on from the point of a user pressing the keyboard
interrupt key to initiate an off command, for example, ultimately results in a
word of digital control data being sent to the 1553 interface. At that point, the
routine called OUTW1553 is invoked. The arguments passed to this routine are
a pointer to the command block in 1553 memory where the command word
is stored, the data word to be output, and a try count in case of errors. The
command block pointer is enough to identify the 1553 controller being
accessed. (Each 1553 VME board houses two controllers.) Normally, the job to
be done is to copy the data word into the command block and alert the 1553
interface chip to process the command. But, if this command block is one
which should be handled by a co-processor, then we build a short message
instead and send it to the command queue for the proper co-processor.

How shall we determine whether a given command block should be handled
by another cpu? One plan is to key on the address of the command block
itself. In the case of the ramp co-processors, each uses a 1553 controller whose
base address is $00Ex0000, where “x” is the co-processor number. (Each 1553
controller uses 64K of address space.) This scheme is straightforward if the
main cpu assumes knowledge of this formulation. One disadvantage it might
have is that the ownership of a given 1553 controller is not program
controlled. It depends upon the setting of the address switches on the 1553
board. (One could still get program control by changing the formulation
dynamically.)

Another way to detect whether the 1553 control should be passed on is by
examining the content of the command block itself. The hi byte of the first
word is used to specify an optional offset to a “diagnostics block” for making a
record of errors and usage counts. If the byte is zero, no diagnostics are
recorded; if it is positive, it is taken as an offset from the start of the command
block to an 8-byte area used for placing the diagnostics information. If the byte
were negative, it could signify that a co-processor is to do the control of the
1553 controller which houses the command block. Specifically, if the first byte
were in the range $C0–CF, it could mean that the corresponding co-processor
in the range 0–15 should be passed a message via its command queue. A
possible disadvantage of this scheme would be that every 1553 command
block in that controller’s memory would have to be identified with the proper
byte value in order to insure that the main VME cpu would not try to drive
that 1553 controller itself.

A third approach is to keep a table of 1553 controller ownership. The table

1553 Control for Co-proc Feb 2, 1989 page 3
there is a table of 1553 queue pointers. An entry is placed into this table the
first time 1553 I/O is done to a particular controller. One could add an
additional field to the entries in this non-volatile table which would declare
co-processor ownership for a given controller.

Alternatively, one could place a special code word in the controller’s memory
that could be interpreted as a declaration of ownership. Let a word near the
end of a controller’s 64K block of memory space be used for this code. The last
two words (at offset $FFFC from the base address) are actually the controller’s
register block. If we back up two more words before the register block, using
the offset $FFF8, we could use the word at that offset for the purpose. To make
it definite, the word at the offset of $FFF8 will be the code word. If its value is
in the range $C000-C00F, it denotes corresponding co-processor ownership. If
the VME system encounters values in this range when about to do 1553 I/O, it
should not do the 1553 I/O. If it is sending a word to the 1553, it can instead
build a small message to pass to the co-processor via its command queue.

After consideration of the above choices, the last one was chosen. The Data
Access Table entries which drive 1553 data acquisition are ignored when the
code showing co-processor ownership is encountered. When a word of data is
to be sent to a 1553 RT—to set a D/A, for example—a message is built and sent
to the co-processor’s command queue. When the 1553 Test Page is being run,
the code word in memory will have to be altered in order to get it to run. The
1553 driver that is called by that test page will not send any 1553 commands if
it finds that the code word exhibits 1553 controller co-processor ownership.

